
Computer Programming (b) - E1124

(Spring 2021-2022)

Lecture 11

Encapsulation & Inheritance

Instructor

Dr / Ayman Soliman



10/5/2022 2

➢ Contents

➢ Encapsulation

➢ Access Private Members

➢ Why Encapsulation?

➢ C++ Inheritance

➢ Why and When to Use "Inheritance"?

➢ Multilevel Inheritance

➢ Access Specifiers

Dr/ Ayman Soliman



10/5/2022 3

➢ The meaning of Encapsulation, is to make sure that "sensitive" data is hidden

from users.

➢ To achieve this, you must declare class variables/attributes as private (cannot be

accessed from outside the class).

➢ If you want others to read or modify the value of a private member, you can

provide public get and set methods.

➢ Encapsulation

Dr/ Ayman Soliman



10/5/2022 4

➢ To access a private attribute, use public "get" and "set" methods:

➢ Access Private Members

Dr/ Ayman Soliman

Example

#include <iostream>
using namespace std;

class Employee {
private:
// Private attribute
int salary;

public:
// Setter
void setSalary(int s) {

salary = s;
}

// Getter
int getSalary() {
return salary;

}
};

int main() {
Employee myObj;
myObj.setSalary(50000);
cout << myObj.getSalary();
return 0;

}



10/5/2022 5

➢ The salary attribute is private, which have restricted access.

➢ The public setSalary() method takes a parameter (s) and assigns it to the salary

attribute (salary = s).

➢ The public getSalary() method returns the value of the private salary attribute.

➢ Inside main(), we create an object of the Employee class. Now we can use the

setSalary() method to set the value of the private attribute to 50000. Then we

call the getSalary() method on the object to return the value.

➢ Example explanation 

Dr/ Ayman Soliman



10/5/2022 6

➢ It is considered good practice to declare your class attributes as private (as often

as you can).

➢ Encapsulation ensures better control of your data, because you (or others) can

change one part of the code without affecting other parts

➢ Increased security of data

➢ Why Encapsulation?

Dr/ Ayman Soliman



10/5/2022 7

➢ In C++, it is possible to inherit attributes and methods from one class to another.

We group the "inheritance concept" into two categories:

❑ derived class (child) - the class that inherits from another class

❑ base class (parent) - the class being inherited from

➢ To inherit from a class, use the : symbol.

➢ In the next example, the Car class (child) inherits the attributes and methods

from the Vehicle class (parent):

➢ C++ Inheritance

Dr/ Ayman Soliman



10/5/2022 8

➢ Example

Dr/ Ayman Soliman

// Base class
class Vehicle {

public:
string brand = "Ford";
void honk() {

cout << "Tuut, tuut! \n" ;
}

};

// Derived class
class Car: public Vehicle {

public:
string model = "Mustang";

};

int main() {
Car myCar;
myCar.honk();
cout << myCar.brand + " " + myCar.model;

return 0;
}



10/5/2022 9

➢ It is useful for code reusability: reuse attributes and methods of an existing class

when you create a new class.

➢ Why and When to Use "Inheritance"?

Dr/ Ayman Soliman



10/5/2022 10

➢ A class can also be derived from one class, which is already derived from

another class.

➢ In the following example, MyGrandChild is derived from class MyChild (which

is derived from MyClass).

➢ Multilevel Inheritance

Dr/ Ayman Soliman



10/5/2022 11

➢ Example

Dr/ Ayman Soliman

// Base class (parent)
class MyClass {

public:
void myFunction() {

cout << "Some content in parent 
class." ;

}
};

// Derived class (child)
class MyChild: public MyClass {
};

// Derived class (grandchild)
class MyGrandChild: public MyChild {
};

int main() {
MyGrandChild myObj;
myObj.myFunction();
return 0;

}



10/5/2022 12

➢ A class can also be derived from more than one base class, using a comma-

separated list:

➢ Multiple Inheritance

Dr/ Ayman Soliman

// Base class
class MyClass {
public:
void myFunction() {
cout << "Some content in parent class." ;

}
};

// Another base class
class MyOtherClass {
public:
void myOtherFunction() {

cout << "Some content in another 
class." ;

}
};

// Derived class
class MyChildClass: public MyClass, public MyOt
herClass {
};

int main() {
MyChildClass myObj;
myObj.myFunction();
myObj.myOtherFunction();
return 0;

}



10/5/2022 13

➢ You learned from the Access Specifiers types that there are three specifiers

available in C++.

➢ Until now, we have only used public (members of a class are accessible from

outside the class) and private (members can only be accessed within the class).

➢ The third specifier, protected, is similar to private, but it can also be accessed in

the inherited class:

➢ Access Specifiers

Dr/ Ayman Soliman



10/5/2022 14

➢ Example

Dr/ Ayman Soliman

// Base class
class Employee {
protected: // Protected access specifier
int salary;

};

// Derived class
class Programmer: public Employee {
public:
int bonus;
void setSalary(int s) {
salary = s;

}
int getSalary() {
return salary;

}
};

int main() {
Programmer myObj;
myObj.setSalary(50000);
myObj.bonus = 15000;
cout << "Salary: " << myObj.getSalary() << "\n";
cout << "Bonus: " << myObj.bonus << "\n";
return 0;

}



1510/5/2022 Dr/ Ayman Soliman


